Velutinalide C, a New Polycyclic Phragmalin Limonoid from the Leaves of Chukrasia tabularis var. velutina

by Hai-Li Liu^a), Xue-Lian Chen^a), Wei Xiao^{*b}), and Yue-Wei Guo^{*a})

^a) State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, P. R. China (phone: +86-21-50805813; e-mail: ywguo@simm.ac.cn)

^b) Jiangsu Kanion Pharmaceutical Co., Ltd., Jiangsu 222001, P. R. China (e-mail: wzhzh-nj@163.net)

Velutinalide C (4), a new polycyclic phragmalin limonoid featuring a C(15)–C(21) linkage and a C₄ unit at C(15), together with two known related compounds, chukfuransins C and D (2 and 3, resp.), was isolated from the leaves of *Chukrasia tabularis* var. *velutina*. The structure of the new compound 4 was elucidated on the basis of extensive spectroscopic analyses and comparison with literature data.

Introduction. – Phragmalin limonoids, exemplified by phragmalin (1; Fig. 1) [1], are a type of ring B,D-seco-limonoids with characteristic tricyclo $[3.3.1^{2,10}, 1^{1,4}]$ decane or tricyclo [4.2.1^{10,30}.1^{1,4}]decane (rearranged phragmalin limonoids) A- and B-ring systems, most of which bear orthoester groups at positions 1,8,9 or 8,9,14 or 8,9,30 or 8,9,11, and C(16)/C(17) δ -lactone ring (ring D) [2-5]. In few cases, ring D was cleaved, leading to C(16)/C(17) δ -seco-lactone [6], C(16)/C(8) δ -lactone [7], and C(16)/C(30) δ -lactone derivatives [8]. Many phragmalin limonoids showed biological properties, such as antifeedant [9], anti-inflammatory [10], K⁺ channel blocking [11], and antibacterial [12] activities, which attracted great interest from synthetic organic chemists as challenging targets for total synthesis [13]. Genus Chukrasia (Meliaceae), comprising only two species Chukrasia tabularis and Chukrasia tabularis var. velutina, is a primary source of phragmalin limonoids [14]. So far, more than 140 naturally occurring phragmalin limonoids have been found in genus *Chukrasia*, and some of them possess novel C-atom skeletons, including 16-nor type [15][16], 15-enolic-acyl-16-nor type [17], 15-enolic-acyl type with C(16)/C(30) δ -lactone ring [8], 13/14/18-cyclopropanyl type [5][18], and 19-nor-type [11][19] phragmalin limonoids. Recently, five unprecedented polycyclic phragmalin limonoids, namely chuktabrin B [17], chukfuransins A and B [20], chukfuransins C and D (2 and 3, resp.) [20], featuring a common ring E (furan ring), formally involved in skeleton reconstruction (C(15)-C(21)) linkage for chuktabrin B, 2 and 3; and C(15)-C(20) linkage for chukfuransins A and B), were isolated from C. tabularis collected from Yunnan and Guangdong Province, P. R. China, respectively. Furthermore, among those with C(15)-C(21) linkage, chuktabrin B possessed an extended C_2 unit at C(15), while 2 and 3 had extended C_4 units at C(15), indicating that the genus *Chukrasia* can contiguously provide structurally intriguing phragmalin limonoids.

In the course of our ongoing search for bioactive metabolites from Chinese medicinal plants [21-25], the leaves of *C. tabularis* var. *velutina* were collected from

© 2014 Verlag Helvetica Chimica Acta AG, Zürich

Zhanjiang, Guangdong Province, P. R. China. A preliminary chemical investigation of the AcOEt extract of *C. tabularis* var. *velutina* resulted in the discovery of two new C(15)-acyl-phragmalin limonoids, velutinalides A and B [26]. Our investigation on the minor constituents of the same collection led to the isolation of one additional new polycyclic phragmalin limonoid, named velutinalide C (4), together with two known related compounds, 2 and 3 (*Fig. 1*). Herein, we report the isolation and structure elucidation of the new compound 4.

Results and Discussion. – Routine workup [26] of the AcOEt-soluble portions of the MeOH extract of the leaves of *C. tabularis* var. *velutina* afforded one new compound, named velutinalide C (4), together with two known related compounds, chukfuransins C and D (2 and 3, resp.) [20] (*Fig. 1*). The structures of the known compounds were readily assigned by comparison of their spectral data with those reported in [20]. Furthermore, comparison of the $[\alpha]_D$ values recorded for 2 and 3 with those reported in [20] allowed an unambiguous assignment of the absolute configuration for these two polycyclic phragmalin limonoids.

Velutinalide C (4), optically active white amorphous powder ($[a]_{18}^{18} = +99.1^{\circ}$ (c = 0.45, CHCl₃)), had the molecular formula of C₃₆H₄₄O₁₃, as determined by HR-ESI-MS (m/z 707.2679 ($[M + Na]^+$; calc. 707.2680), which indicated 15 degrees of unsaturation. The IR spectrum showed the absorptions indicating the presence of OH (3440 cm⁻¹) and ester C=O (1733 cm⁻¹) functionalities. The ¹³C-NMR spectrum displayed 36 C-atom resonances (*Table*) including those of eight Me, five CH₂, and eight CH groups (two olefinic and three O-bearing), and 15 quaternary C-atoms (two olefinic, four ester C=O, and four O-bearing). Besides the characteristic features, of three tertiary Me groups (δ (H) 1.17 (s), 0.99 (s), and 0.99 (s); δ (C) 15.8, 14.5, and

28.6), a MeO group (δ (H) 3.66 (s); δ (C) 52.0), an orthoacetate group (δ (H) 1.56 (s); $\delta(C)$ 118.7 and 21.1), and an isobutanovl group ($\delta(H)$ 3.36 – 3.40 (m, 1 H), 1.29 (d, J =6.6, 3 H), and 1.12 (d, J = 6.6, 3 H); $\delta(C)$ 208.4, 38.6, 20.0, and 19.8), one α,β disubstituted furyl ring (δ (H) 6.46 (d, J = 1.8, 1 H) and 7.34 (d, J = 1.8, 1 H); δ (C) 118.7, 148.8, 110.5, and 143.1), and a propanoyloxy group (δ (H) 2.44–2.48 (*m*, 2 H) and 1.03 $(t, J = 7.8, 3 \text{ H}); \delta(C)$ 174.4, 26.6, and 8.7) were distinguished by analysis of the ¹H- and ¹³C-NMR data (*Table*). There were 15 degrees of unsaturation in the molecule of **4**, of which nine were comprised by four ester C=O groups, an orthoacetate group, and the α,β -disubstituted furyl ring, and the remaining six degrees of unsaturation required 4 to possess six further rings at the central core. The aforementioned spectroscopic features strongly suggested that **4** is a polycyclic phragmalin limonoid with a common furan ring involved in skeleton reconstruction. Comparison of the ¹H- and ¹³C-NMR data of **4** with those of co-occurring chukfuransin C (2) revealed that they share the same structure of rings A - C and E, a C(16)/C(30) δ -lactone ring, and a biosynthetically extended C_4 unit (isobutanoyl) at C(15), with the only difference occurring at the substitutent at C(17) in ring F, where the isobutanoyloxy group ($\delta(H)$ 2.74–2.78 (m, 1 H), 1.14 (d, J = 6.9, 3 H), and 0.95 (d, J = 6.9, 3 H); δ (C) 177.5, 33.1, 18.8, and 19.2) of **2** was replaced by a propanoyloxy group ($\delta(H)$ 2.44–2.48 (m, 2 H) and 1.03 (t, J=7.8, 3 H); $\delta(C)$ 174.4, 26.6, and 8.7) in 4, which was in good accordance with the molecular weight for 4 that was 14 mass units less than that of 2. Furthermore, the slightly upfield shifted ¹³C-NMR signals at C(18) (δ (C) 28.6 for 4; 28.9 for 2), and C(20) (118.7 for 4; 119.8 for 2), and the diagnostic HMBC (Fig. 2) between H-C(17) and the corresponding C=O C-atom (δ (C) 174.4) of the propanoyloxy group in 4 further confirmed the assignment. Finally, a comprehensive analysis of the ¹H,¹H-COSY, HSQC, and HMBC spectra allowed assignment of all chemical shifts in ¹H- and ¹³C-NMR spectra (*Table*) of **4**.

The relative configurations for ring-junction atoms of **4** were suggested to be the same as those of the co-occurring **2**, based on almost identical ¹H- and ¹³C-NMR chemical shifts and biogenetic considerations. Furthermore, the relative configuration at C(17), identical with that of **2**, was determined by ROESY experiment (*Fig. 2*). Thus, the ROESY correlations Me(32)/H–C(14), Me(18)/H–C(17), Me(18)/H–C(14), and H–C(14)/H–C(17) indicated that H–C(17) is α -oriented, consequently establishing the β -orientation of the propanoyloxy group at C(17). In addition, the

Fig. 2. Selected ${}^{1}H, {}^{1}H-COSY$ (---), HMB (H \rightarrow C), and NOESY (H \leftrightarrow H) correlations of 4

Position	4		2
	$\delta(\mathrm{H})$	$\delta(C)^b)$	$\delta(C)^b)$
1	-	85.4 (s)	85.4 (q)
2	_	77.9(s)	78.1(q)
3	3.68(s)	83.2(d)	83.0(d)
4	_	45.8(s)	45.8(s)
5	2.85 - 2.89(m)	35.2(d)	35.3(d)
6	2.45-2.49 (m), 2.27-2.31 (m)	34.0 <i>(t)</i>	34.1 <i>(t)</i>
7	_	172.9(s)	172.9(s)
8	_	81.6 (s)	81.7 (s)
9	-	84.9 (s)	85.0 (s)
10	_	45.8(s)	45.8(s)
11	1.81 - 1.85 (m), 2.18 (br. d, $J = 11.7$)	26.0(t)	25.9(t)
12	1.39 - 1.43 (m), 1.99 - 2.03 (m)	27.9 (<i>t</i>)	27.8 (<i>t</i>)
13	_	39.6 (s)	39.5 (s)
14	2.85(s)	48.3(d)	48.4(d)
15	_	57.6 (s)	57.5 (s)
16	_	167.4(s)	167.2(s)
17	5.33(s)	71.8(d)	71.7(d)
18	0.99(s)	28.6(q)	28.9(q)
19	1.17(s)	15.8(q)	15.7(q)
20	_	118.7(s)	119.8(s)
21	_	148.8(s)	148.7(s)
22	6.46 (d, J = 1.8)	110.5(d)	110.5(d)
23	7.34 (d, J = 1.8)	143.1(d)	143.1(d)
28	0.99(s)	14.5(a)	14.5(a)
29	1.86 (d, J = 10.5), 1.64 (d, J = 10.5)	39.8(t)	39.6 <i>(t)</i>
30	5.74(s)	75.6(d)	75.6(d)
31	_	118.7(s)	118.7(s)
32	1.56(s)	21.1(a)	21.1(a)
1'	_	208.4(s)	208.5(s)
2'	3.36 - 3.40 (m)	38.6(d)	38.6(d)
3'	1.12 (d, J = 6.6)	19.8(a)	19.8(a)
4'	1.29 (d, J = 6.6)	20.0(a)	20.0(a)
2-OH	not observed		-
3-OH	3.29 (hr s)	_	_
7-MeO	3.66 (s)	52.0(a)	51.9(a)
$MeCH_COO-C(17)$	-	174.4(s)	51.5 (q)
MeCH.COO-C(17)	244 - 248(m)	266(t)	
$MeCH_{COO} = C(17)$	$103(t \ I - 7.8)$	$\frac{20.0(i)}{87(a)}$	
M_{e} CHCOO C(17)	1.05 (l, J - 7.0)	0.7(q)	177.5(c)
<i>Me</i> ₂ encoo-e(17)			177.3(3) 221(4)
			188(a)
			10.0(q)
			13.2 (9)

Table. ¹*H*- and ¹³*C*-*NMR* Data of **4**, and ¹³*C*-*NMR* Data of **2** (in CDCl₃; δ in ppm, J in Hz)^a)

 $^{\rm a})$ Assignments were achieded by DEPT, $^1\rm H, ^1\rm H-COSY,$ HMQC, and HMBC experiments. $^{\rm b})$ Multiplicities from DEPT sequence.

1448

absolute configuration of 4 was assigned as the same as that of 2, by comparison of the CD data of 4 with those of 2, of which the absolute configuration was recently determined by X-ray diffraction analysis [20]. Therefore, the structure of 4 was elucidated as 17-propanoyloxy derivative of 2.

A literature survey revealed that almost all reported phragmalin limonoids with various different C-atom skeletons [16][18][19] were isolated from Yunnan *C. tabularis* var. *velutina*. To the best of our knowledge, this is the second report of the phragmalin limonoids from *C. tabularis* var. *velutina* collected from Zhanjiang, Guangdong Province, P. R. China. It may be worth pointing out, although velutinalides A and B, previously reported by our group, belong to the common C(15)-acyl-type phragmalins, the skeleton of the newly discovered polycyclic phragmalin limonoid, velutinalide C (4), characterized by C(15)-C(21) linkage and a biosynthetically extended C_4 unit at C(15), is relatively rare.

Many phragmalin limonoids exhibited broad bioactivities as mentioned above. To explore their possible bioactivities, all isolates, 2-4, were evaluated for their tumor cell growth inhibition and antibacterial activities. Unfortunately, 2-4 were found to be inactive against the growth of tumor cell lines human lung adenocarcinoma A-549 and human lymphocytic leukemia HL-60 at a concentration of 20 µg ml⁻¹. In addition, 2-4 showed no efficient inhibition effect on microbial growth, with an *MIC* (minimum inhibitory concentration) value of higher than 0.5 mg ml⁻¹ against *Staphylococcus aureus* NEWMAN and *Pseudomonas aeruginosa* MPAO1, respectively. Further studies should be conducted to understand the true biological/ecological role of these metabolites in the life cycle of the plant of the Meliaceae family.

This work was financially supported by the *National Marine '863' Projects* (Nos. 2012AA092105 and 2013AA092902), the *Natural Science Foundation of China* (Nos. 41476063, 31070310, and 81273430), the *SKLNM/CPU Project* (No. SKLNMKF 201412), and was partially funded by the *EU 7th Framework Programme-IRSES Project* (No. 246987).

Experimental Part

General. TLC: Precoated silica-gel plates (SiO₂; *G60*, *F*₂₅₄; *Yan Tai Zi Fu Chemical Group Co.*). Column chromatography (CC): commercial SiO₂ (200–300 and 300–400 mesh; *Qing Dao Hai Yang Chemical Group Co.*) or *Sephadex LH-20* (*General Electric Company*). Reversed-phase (RP) HPLC: *Agilent 1100* series liquid chromatography equipped with a VWD G1314A detector at 210 nm and a semiprep. *ZORBAX ODS* column (250 mm × 9.4 mm i.d., 5 µm particle size). Optical rotations: *PerkinElmer 341* polarimeter at the Na D-line; cell length 10 cm. UV Spectra: *756 CRT* spectrophotometer; λ_{max} (log ε) in nm. CD Spectra: *JASCO 810* spectrometer; λ_{max} ($\Delta \varepsilon$) in nm. IR Spectra: *Nicolet Magna FT-IR 750* spectrometer; $\tilde{\nu}$ in cm⁻¹. ¹H- and ¹³C-NMR spectra: *Varian Mercury-300* (300 MHz for ¹H) and *Varian Mercury-400* (100 MHz for ¹³C) spectrometers; assignments supported by ¹H,¹H-COSY, HSQC, HMBC, and ROESY experiments; δ in ppm rel. to residual CDCl₃ (δ (H) 7.26, δ (C) 77.0) as internal standard, *J* in Hz. ESI-MS and HR-ESI-MS: *Q-TOF-Micro-LC-MS/MS* spectrometer; in *m/z*.

Plant Material. The leaves of *C. tabularis* var. *velutina* were collected from Zhanjiang, Guangdong Province, P. R. China, in July 2009 and identified by Assoc. Professor *J.-G. Shen* of Shanghai Institute of Material Medica, Chinese Academy of Sciences. A voucher sample (No. 09-P-49) is available for inspection at the Herbarium of SIMM-CAS.

Extraction and Isolation. The chipped leaves of *C. tabularis* var. *velutina* (1 kg) were extracted exhaustively with MeOH (3×51) at r.t. The MeOH extract was concentrated *in vacuo* to give a residue, which was suspended in H₂O, and partitioned successively with AcOEt and BuOH. The AcOEt-soluble

extract was evaporated *in vacuo* to give a residue (27 g), which was subjected to CC (*Sephadex LH-20*; CHCl₃/MeOH 1:1) to afford three fractions, *Frs.* 1–3. *Fr.* 2 (8 g) was subjected to CC (SiO₂; petroleum ether/AcOEt 90:10, 70:30, 50:50), followed by a gradient of CHCl₃/MeOH (90:10, 80:20, 70:30, 60:40), to give five subfractions, *Frs.* 2.1–2.5. *Fr.* 2.3 (1.6 g) was subjected to CC (SiO₂; CHCl₃/MeOH 99:1, 98:2, 95:5) to give four subfractions, *Fr.* 2.3.1–2.3.4; then *Fr.* 2.3.3 was separated by semi-prep. HPLC (MeCN/H₂O 80:20; 2.0 ml min⁻¹) to yield pure **2** (t_R 19.3 min; 10.8 mg), **3** (t_R 18.1 min; 4.7 mg), and **4** (t_R 16.2 min; 5.7 mg).

Chukfuransin C (= ($^{7}R, 5R, 68, 78, 98, 10R, 118, 14R, 15R, 218, 24R, 258$)-6,7-Dihydroxy-9-(2-methoxy-2oxoethyl)-3,8,10,14-tetramethyl-21-(2-methylpropanoyl)-22-oxo-2,4,19,23,26-pentaoxanonacyclo[12.10.1. $1^{3,11}, 1^{5,8}, 0^{1,11}, 0^{5,10}, 0^{6,24}, 0^{16,20}, 0^{21,25}$]heptacosa-16(20),17-dien-15-yl 2-Methylpropanoate; **2**). White amorphous powder. $C_{37}H_{46}O_{13}$. [a] $_{D}^{18}$ = +88.7 (c = 1.02, CHCl₃). CD (c = 1.0⁻³ M, MeOH): 213 (-6.23), 236 (+5.87).

Chukfuransin D (= (1R,5R,6S,7S,9S,10R,11S,14R,15R,185,20R,21S,24R,25S)-6,7-Dihydroxy-18-methoxy-9-(2-methoxy-2-oxoethyl)-3,8,10,14-tetramethyl-21-(2-methylpropanoyl)-22-oxo-2,4,19,23,26-pentaoxanonacyclo[12.10.1.1^{3,11},1^{5,8},0^{1,11},0^{5,10},0^{6,24},0^{16,20},0^{21,25}]heptacos-16-en-15-yl 2-Methylpropanoate; **3**). White amorphous powder. $C_{38}H_{50}O_{14}$. [α]¹⁸_D = +31.0 (c = 0.39, CHCl₃). CD (c = 9.59 · 10⁻⁴ M, MeOH): 192 (+34.6), 288 (- 3.06).

Velutinalide C (=(1R,5R,6S,7S,9S,10R,11S,14R,15R,21S,24R,25S)-6,7-Dihydroxy-9-(2-methoxy-2oxoethyl)-3,8,10,14-tetramethyl-21-(2-methylpropanoyl)-22-oxo-2,4,19,23,26-pentaoxanonacyclo-[12.10.1.1^{3,11}.1^{5,8}.0^{1,11}.0^{5,10}.0^{6,24}.0^{16,20}.0^{21,25}]heptacosa-16(20),17-dien-15-yl Propanoate; **4**). White amorphous powder. [a]₁^B = +99.1 (c = 0.45, CHCl₃). UV (MeOH): 239 (4.77). CD (c = 7.31 · 10⁻⁴ M, MeOH): 213 (- 8.02), 237 (+9.75). IR (KBr): 3440, 2965, 1733, 1140. ¹H- and ¹³C-NMR: see Table. ESI-MS: 707 ([M + Na]⁺). HR-ESI-MS: 707.2679 ([M + Na]⁺, C₃₆H₄₄O₁₃Na⁺; calc. 707.2680).

Cytotoxicity Assays. The cytotoxicities of 2-4 against A-549 and HL-60 cell lines were evaluated by using sulforhodamine B (SRB) [27] and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2*H*-tetrazolium bromide (MTT) [28] method. Etoposide phosphate was used as positive control, with IC_{50} values of 0.5 µg ml⁻¹ for A-549 and 5.4 µg ml⁻¹ for HL-60 cell lines, resp.

Antibacterial Test. The antimicrobial activities of 2-4 against *S. aureus* NEWMAN and *P. aeruginosa* MPAO1 strains were tested by paper disk diffusion antimicrobial susceptibility test [29] and *MIC* method, resp., zones of inhibition were measured after 24 h of incubation at 37°. For the *MIC* method, all isolates were dissolved in DMSO and diluted with culture broth to a concentration of 0.5 mg ml⁻¹. Further, 1:2 serial dilutions were performed by addition of culture broth to reach concentrations ranging from 0.5 to 0.0156 mg ml⁻¹; 100 µl of each dilution were distributed in 96-well plates, as well as a sterility control and a growth control (containing culture broth plus DMSO, without isolates). Each test and growth control well was inoculated with 5 µl of a bacterial suspension (10⁵ CFU/well). The 96-well plates were incubated at 37° for 24 h. *MIC* Values of the compounds against *S. aureus* NEWMAN and *P. aeruginosa* MPAO1 strains were defined as the lowest concentration of each compound, which completely inhibited bacterial growth.

REFERENCES

- [1] R. R. Arndt, W. H. Baarschers, Tetrahedron 1972, 28, 2333.
- [2] M. Nakatani, S. A. M. Abdelgaleil, M. M. G. Saad, R. C. Huang, M. Doe, T. Iwagawa, *Phytochemistry* 2004, 65, 2833.
- [3] R. L. Baxter, F. J. J. Dijksma, R. O. Gould, S. Parsons, Acta Crystallogr., Sect C: Cryst. Struct. Commun. 1998, 54, 1182.
- [4] J. Wu, Q. Xiao, J.-S. Huang, Z.-H. Xiao, S.-H. Qi, Q. X. Li, S. Zhang, Org. Lett. 2004, 6, 1841.
- [5] C.-Q. Fan, X.-N. Wang, S. Yin, C.-R. Zhang, F.-D. Wang, J.-M. Yue, Tetrahedron 2007, 63, 6741.
- [6] M. M. G. Saad, T. Iwagawa, M. Doe, M. Nakatani, Tetrahedron 2003, 59, 8027.
- [7] Y.-Y. Chen, X.-N. Wang, C.-Q. Fan, S. Yin, J.-M. Yue, Tetrahedron Lett. 2007, 48, 7480.
- [8] J. Luo, J.-S. Wang, X.-F. Huang, J.-G. Luo, L.-Y. Kong, Tetrahedron 2009, 65, 3425.
- [9] J. Wu, Q. Xiao, S. Zhang, X. Li, Z. Xiao, H. Ding, Q. Li, Tetrahedron 2005, 61, 8382.

- [10] J. Luo, J.-S. Wang, J.-G. Luo, X.-B. Wang, L.-Y. Kong, Tetrahedron 2011, 67, 2942.
- [11] H.-B. Liu, H. Zhang, P. Li, Z.-B. Gao, J.-M. Yue, Org. Lett. 2012, 14, 4438.
- [12] J.-Q. Liu, X.-R. Peng, W.-M. Zhang, L. Shi, X.-Y. Li, J.-C. Chen, M.-H. Qiu, RSC Adv. 2013, 3, 4890.
- [13] T. P. Lebold, G. M. Gallego, C. J. Marth, R. Sarpong, Org. Lett. 2012, 14, 2110.
- [14] S.-K. Chen, B.-Y. Chen, H. Li, in 'Flora Republicae Popularis Sinicae (Zhongguo Zhiwu Zhi)', Ed. S.-K. Chen, Science Press, Beijing, 1997, Vol. 43, Chapt. 3, pp. 47–49.
- [15] C.-R. Zhang, S.-P. Yang, S.-G. Liao, C.-Q. Fan, Y. Wu, J.-M. Yue, Org. Lett. 2007, 9, 3383.
- [16] J. Luo, J.-S. Wang, J.-G. Luo, X.-B. Wang, L.-Y. Kong, Org. Lett. 2009, 11, 2281.
- [17] C.-R. Zhang, C.-Q. Fan, L. Zhang, S.-P. Yang, Y. Wu, Y. Lu, J.-M. Yue, Org. Lett. 2008, 10, 3183.
- [18] C.-R. Zhang, S.-P. Yang, Q. Zhu, S.-G. Liao, Y. Wu, J.-M. Yue, J. Nat. Prod. 2007, 70, 1616.
- [19] J.-L. Yin, Y.-T. Di, X. Fang, E.-D. Liu, H.-Y. Liu, H.-P. He, S.-L. Li, S.-F. Li, X.-J. Hao, *Tetrahedron Lett.* 2011, 52, 3083.
- [20] K. Hu, J.-Q. Liu, X.-N. Li, J.-C. Chen, W.-M. Zhang, Y. Li, L.-Q. Li, L.-L. Guo, W.-G. Ma, M.-H. Qiu, Org. Lett. 2013, 15, 3902.
- [21] X.-L. Chen, H.-L. Liu, J. Li, G.-R. Xin, Y.-W. Guo, Org. Lett. 2011, 13, 5032.
- [22] X.-Y. Huang, Q. Wang, H.-L. Liu, Y. Zhang, G.-R. Xin, X. Shen, M.-L. Dong, Y.-W. Guo, *Phytochemistry* 2009, 70, 2096.
- [23] J.-R. Wang, T. Kurtán, A. Mándi, Y.-W. Guo, Eur. J. Org. Chem. 2012, 5471.
- [24] J.-R. Wang, H.-L. Liu, T. Kurtán, A. Mándi, S. Antus, J. Li, H.-Y. Zhang, Y.-W. Guo, Org. Biomol. Chem. 2011, 9, 7685.
- [25] J.-D. Wang, W. Zhang, Z.-Y. Li, W.-S. Xiang, Y.-W. Guo, K. Krohn, Phytochemistry 2007, 68, 2426.
- [26] X.-L. Chen, H.-L. Liu, Y.-W. Guo, Planta Med. 2012, 78, 286.
- [27] V. Vichai, K. Kirtikara, Nat. Protoc. 2006, 1, 1112.
- [28] M. C. Alley, D. A. Scudiero, A. Monks, M. L. Hursey, M. J. Czerwinski, D. L. Fine, B. J. Abbott, J. G. Mayo, R. H. Shoemaker, M. R. Boyd, *Cancer Res.* 1988, 48, 589.
- [29] A. W. Bauer, W. M. Kirby, J. C. Sherris, M. Turck, Am. J. Clin. Pathol. 1966, 45, 493.

Received April 3, 2014